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NOTE: SOME CONDITIONS OF MACROECONOMIC STABILITY
By Davip HAwkINs AND HERBERT A. SimoN

IN a recent paper by one of us' there is an error in the statement of a
supposed sufficient condition that a system of linear homogeneous equa-
tions should have solutions all of the same sign. The present note is
intended to correct that error, to state and prove an apparently new,
necessary and sufficient condition that the stated consequence should
hold, and finally to interpret the significance of this condition in economic
terms.

Two preliminary remarks are in order. First, the error in the theorem
originally stated does not affect the substance of the paper to which
reference is being made. That paper sets forth theorems on the stability
of systems which do have stationary solutions w:th all variables positive.
The lemma under consideration here gives necessary and sufficient
conditions that a system will have stationary solutions with all variables
positive. That is, it gives a criterion to test whether the theorems in the
body of the paper are applicable to any particular system of equation.

Second, the conditions under which the variables satisfying a system of
linear equations will be all positive are of economic interest in their own
right. They are, in fact, the conditions determining whether a system of
linear production functions is capable, given a sufficient supply of the
“fixed” factors of production, of producing any desired schedule of
consumption goods.

The system of equations’ is the following?’

(1) Zb.-,-xi = O, (1, = 1, ...,n)
=1

with A = 0 and of rank n — 1; b;; > O for all 7 = j; by; < O for all 4.
Instead of dealing directly with the system (1), it will be more con-
venient to consider the associated nonhomogeneous system:

@) :Zlaf,'l‘,'—k.'=0, G=1--,m)

! David Hawkins, ‘“Some Conditions of Macroeconomic Stability,” Ecoxo-
METRICA, Vol. 16, October, 1948, pp. 309-322. The theorem under discussion is on
page 312.

? The system (1) is essentially that introduced by W. W. Leontief in The Struc-
ture of American Economy, 1919-1929, Cambridge: Harvard University Press,
1941. p. 48.

3 In Hawkin's original system we require only that b;; 2 0for ¢  j. Thestronger
condition by; > 0 employed here simplifics the statement of the theorem and its
proof and, because of the continuity of solutions of these equations with respect
to variations of these coeflicients, does not involve any essential Joss of generality.
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with
m=n-— l;ki=b.',. Qi = —bi], (i,j= 1, ,m);IA I = |as,l#0.

It is clear that, for z, = 1, the solution of (1) is identical with that of
(2), and the [z;] satisfying (1) will all be of the same sign if and only if
the [x;] satisfying (2) are all positive. Further, without loss of generality,
we can take ai; = —biy = 1.

In equations (2), z; is the total quantity of the ith commodity pro-
duced; k; is the quantity of the ith commodity consume.'; —a;;z;is the
quantity of the ith commodity used in producing the jth commodity.
The nth equation in system (1), which is linearly dependent upon the
first m equations, may be interpreted as a consumption function. Alter-
natively, the vector [;] in (2), which gives the relative quantities of the
various commodities consumed, may be considered the schedule of
consumption goods.

The production system (2) is economically meaningful only if the [z]
satisfying it are all positive. Conceivably, the signs of the [z;] may
depend upon the magnitude of the [k; ]—that is, upon the schedule of
consumption goods. Hence we will be interested in knowing under what
conditions the [z;] will be positive for some given set [k], and under
what conditions the [x;] will be positive for any set [k; 2> 0].

The defective theorem is the following: LEMMA: The system of equations
(1) is satisfied only for z; all of the same sign.

This theorem is true only for n < 3, asshown by the following counter-
example: )

—2n 4404+ -t =0
4, — 20+ 3+ w =0
ot 22— 25+ 420 =0
1+ T+ 4ry— 224 =0

We verify immediately that A = 0, and is of rank n — 1, and thatb;; > 0
for all ¢ 7, while b;; < 0 for all 4. But the general solution of this
systemis:zy = K; 72 = K;23 = —K; s = —K; where K is an arbitrary
constant.

The fallacy in the proof offered for the lemma lies in paragraph III of
Hawkins’ paper. Specifically, it is not correct that: if all members of a
set of hyperplanes intersect in a common line through the origin, and if
each member of the set has points lying in the first quadrant, then the
common line of intersection must lic in the first quadrant.

We now proceed to a valid, necessary and sufficient condition that the
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equations (2) be satisfied only for [z;] all positive. THrorEM: A necessary
and suficient condition that the z; salisfying (2) be all positive is that all
principal minors of the malriz || ai; || be positive.

To prove this theorem we first consider the augmented m-n matrix
|lai;j — ki}] and proceed to reduce this matrix, row by row, to tri-
angular form. That is, by adding to each row an appropriate linear
combination of the preceding rows, we obtain a matrix in which all
elements to the left of the main diagonal are zero. This procedure can
always be carried out step by step until a row (say the jth) is reached
with a nonpositive diagonal term. It does not alter the solution of the
system and does not alter the values of the principal minors consisting
of the first ¢ rows and columns ¢ = 1, ---, m).

Because of the arrangement of signs in our particular matrix, all cle-
ments in the first column except the first can be made zero by adding to
each row an appropriate positive multiple of the first row. The signs of
all other elements off the main dingonal will remain negative. The sign of
ax may remain positive or become negative. In the former case, the third
and all following elements in the second column can be made zero by
adding to the corresponding rows an appropriate positive muitiple of the
second row. In general, if the first ¢ elements on the main diagonal re-
main positive after the first i—1 steps in the triangularization, then the
ith step in triangularization can be carried out by adding to the remaining
rows a positive multiple of the ith row; otherwise by adding a negative
multiple of the ith row. We carry out the triangularization until we
reach a row with a nonpositive diagonal term.

For the matrix finally obtained, we distinguish two cases: (A) all the
diagonal terms in the triangular matrix are positive, (B) at least one term
on the main diagonal is nonpositive (and the jth term, say, is the first
nonpositive one). We now prove that in case (A) all the principal minors
are positive and all the x; are positive; while in case (B) at least one prin-
cipal minor is nonpositive and at least one of the z; is negative—a
statement equivalent to our theoren..

A. In case (A) we solve the corresponding system of equations suc-
cessively for &m , &m1, -+ , 1 in terms of the k.. Since k., > 0, we must
have xn, > 0. Since kn—; > 0, it follows that if all z.,_; > 0 (i < j), then
Zm-; > 0. Hence by induction, all the 2; must be positive. But, since a
triangular determinant equals the product of the elements on its main
diagonal, all principal minors consisting of the first k rows and columns
of the triangular matrix are positive (k = 1, - -+, m). But these minors
are equal to the corresponding minors of the original matrix || a;; | |.

B. In case (B), all elements to the right of the main diagonal in the
jth row of the diagonalized matrix are negative, and the diagonal
term is nonpositive. Suppose now that all z; for ¢ > j are positive.

Reproduced with permission of the copyright qwner. FLBTJ reprodu tjon prohjbited without permission.

www.irpublicpolicy.ir



Then, since &; is positive, 2; must be negative.! But the principal minor
of the first j rows and columns of the triangularized matrix will be nega-
tive or zero, since the jth element in the principal diagonal is nonpositive,
the others positive. Hence the corresponding minor in | | a;; | | will be
nonpositive.

Since the signs of the z; obviously do not depend on the order in which
the equations are arranged before triangularization, ‘u case (A) all the
principal minors of | | a;; | | must be positive.

This completes the proof of the theorem. Moreover .ur proof gives a
direct method of testing whether the 2; satisfying a given matrix are all
positive.

CoroLLARY: A necessary and sufficient condition thal the x; salisfying
(2) be all positive for any set [ks > 0] is that all principal minors of the
malriz | | ai; | | are positive. This corollary follows immediately from the
theorem, and from the consideration that the elements of the matrix
| lai;] | are independent of the [&].

Economic Interpretalions. From the corollary, we see that if the produc-
tion equations are internally consistent in permitting the production of
some fixed schedule of consumption goods, then these consumption goods
ean be obtained in any desired proportion from this production system.
Henee the system will be consistent with any schedule of consumption
goods.

The condition that all principal minors must be positive means, in
economic terms, that the group of industries corresponding to each minor
must be capable of supplying more-than its own needs for the group of
products produced by this group of industries. If this is true, and if the
condition A = 0 for equations (1) is satisfied, then we can say that each
group of industries must be just capable of supplying its own demands
upon itself and the demands of the other industries in the economy.
For example, if the principal minor involving the ith and jth commodities
is negative, this means that the quantity of the ith commodity required
to produce one unit of the jth commodity is greater than the quantity
of the ith commodity that can be produced with an input of one unit of
the jth commodity. Under these circumstances, the production of these
two commodities could not be continued, for they would exhaust each
other in their joint production.

University of Colorado and
Illinois Institule of Technology

4 Or, if the diagonal term is zero, we have a contradiction—i.e., all z for { > j
cannot be positive,
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